数学说课稿初中范文集合7篇
在教学工作者实际的教学活动中,可能需要进行说课稿编写工作,说课稿可以帮助我们提高教学效果。说课稿应该怎么写呢?下面是小编帮大家整理的数学说课稿初中7篇,欢迎大家借鉴与参考,希望对大家有所帮助。
数学说课稿初中 篇1各位评委、老师:
大家好!我说课的内容是人教版义务教育课程标准实验教科书八年级上册第十五章第二大节第四课单项式的乘法,下面我从教材分析、教学目的的确定、教学方法的选择、教学过程的设计等几个方面对本节课进行分析说明。
一、教材分析
本节课主要讲解的是单项式乘以单项式,是在前面学习了幂的运算性质的基础上学习的,学生学习单项式的乘法并熟练地进行单项式的乘法运算是以后学习多项式乘法的关键,单项式的乘法综合用到了有理数的乘法、幂的运算性质,而后续的多项式乘以单项式、多项式乘以多项式都要转化为单项式的乘法,因此单项式的乘法将起到承前启后的作用,在整式乘法中占有独特的地位。
二、教学目的
1. 使学生理解单项式乘法法则,会进行单项式的乘法运算 。
2. 通过单项式乘法法则的推导,发展学生的逻辑思维能力。
教学目的的第一条的确定是考虑到学生对单项式的概念、有理数乘法、幂的运算都较为熟练,在此基础上导出的单项式乘法法则学生能够达到“理解”的要求,同时由于单项式乘法的所有内容已包含在这节课中,学生能按照一定的步骤完成单项式的乘法运算,据此确定了教学目的的第一条。而单项式法则的导出过程是发展学生逻辑思维能力的极好素材,据此确定了教学目的的第二条。
三、教学重点、难点:
重点:掌握单项式乘法法则。
(这是因为要熟练地进行单项式的乘法运算,就得掌握和深刻理解运算法则,对运算法则理解得越深,运算才能掌握的越好)
难点:多种运算法则的综合运用
(这是因为单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辨认和区别各种不同的运算及运算所使用的法则,易于将各种法则混淆,造成运算结果错误。)
四、教学方法
本节课在教学过程的不同阶段采用不同的教学方法,以适应教学的需要。
1、在新课学习阶段的单项式的乘法法则的推导过程中,采用了引导发现法。通过教师设计的问题,引导学生将需要解决的问题转化成用已学过的知识可解决的问题,让学生即掌握了新的知识,又培养了学生探索探索问题的能力,充分体现了教师的主导作用和学生的主体作用,使学生始终处在观察思考之中。引导发现法的使用对实现教学目的的第二条起了很重要的作用,突出了本节课的重点。
2、在新课学习的例题讲解阶段,采用了讲练结合法。对例题的学习,围绕问题进行,通过教师引导、学生观察、思考,寻求解决问题的方法,在解题的过程中展开思维。与此同时还进行多次有较强针对性的练习,分散难点,对学生分层进行训练,化解难点,并注意及时矫正,使学生在前面出现的错误不致于影响后面的解题,为后面的学习扫清障碍,通过例题的学习教师给出了解题规范,并注意对生良好学习习惯的培养。
3、在归纳小结这个阶段采用师生共同总结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误。
4、本节课的教学内容丰富,训练量大,利用投影仪,增大课堂容量,提高课堂教学效率。
五、教学过程
本节课的教学过程主要包括以下五个环节:
1、 创设问题情境
2、新课学习
3、反馈练习
4、小结
5、作业布置。
(1) 创设问题情境
本节课通过一实际问题,引入课题,这样的目的是通过问题情境的创设,激发学生求知的欲望,通过问题
1、问题
2、的设置进而明确本节课的学习内容。
(2) 新课学习
新课学习包括单项式乘法法则的推导和例题讲解。
① 单项式乘法法则的推导
由于八年级学生还不具备独立获取知识的能力,单项式乘法法则的推导必须在教师的指导下完成,为此我设计了两个引例。引例1中的两个问题就是引导学生进行观察、分析两个单项式如何相乘,使学生能运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘以单项式的运算法则。引例2让学生动手尝试,在尝试成功的基础上再提出问题3,由问题3引导学生进行归纳,最后得出单项式乘以单项式的法则。从而实现理解单项式乘法法则的这一教学目的,同时在上述过程中,让学生感受到在研究问题中所体现的“将未知转化为已知”的数学思想,通过尝试活动,使学生体会到从“特殊到一般”的认识规律,从而启迪了学生的思维,使学生亲身感受到数学知识的产生和发展过程,发展了学生的逻辑思维能力,较好地实现了教学目的第二条,教学的重点内容学生得以掌握。
在此基础上,我又设计了一组简单的练习,由学生回答,强化对单项式的乘法法则的理解和运用,发现问题及时纠正。
② 例题讲解
本着循序渐进的原则,对例题按照逐步增加运算种类进行了编排,使之由浅入深,由易到难,由单一到综合。我总共设计了三道例题。
例1是单项式乘以单项式的计算,在讲解此题时关键是让学生按照单项式乘法的法则进行运算。例2是单项式的乘方与乘法的混合运算,在例2后我又设计了一问题,此问题的设计主要是引导学生观察,根椐题目特征,辩认出它们是哪种运算,应选用什么样的法则进行计算,使学生逐渐分清运算类型,正确实运用法则,以实现难点的分散和突破,并提高学生运算的熟练程度。例3是单项式的乘法在实际生活中的应用,通过例3使学生认识到数学在日常生活和生产中应用十分广泛,从而逐步培养学生应用数学的意识。
在例题的教学过程中除学生口算计算过程,教师要给出规范的解题过程,并要求学生按规范的书写格式进行练习和作业。
在每道题完成之后,都配有与例题相近的巩固练习,由学生板演和分组练习,发现问题及时纠正,以实现“会进行单项式的乘法计算”这一教学目的。
(3) 反馈练习
根据本节课的教学目的我又设计了反馈练习,以了解学生对本节课所学的内容的掌握情况,并再一次对出现的问题进行矫正,使学生对单项式的乘法运算的熟练程度得以加强。
(4) 小结
本节课的小结由师生共同完成,先由教师提问,学生回答,然后教师归纳形成知识系统,通过小结,使学生明确单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,引起学生对单项式乘法中系数与指数运算易混淆等问题的重视。
(5) 布置作业
数量不多的作业,既能让学生能对本节知 ……此处隐藏9969个字……一元二次方程,采用直接开平方法来解;对于方程的左边能用提公因式或乘法公式分解因式分解的一元二次方程,则采用因式分解法求解;其余的方程,则选择公式法或配方法。通过比较发现,无论选择哪一种方法解一元二次方程,基本的思想都是“降次”。直接开平方法和公式法是通过开平方达到降次的目的,配方法是通过配方再开平方达到降次的目的,因式分解法是通过把方程分解成两个一次因式的积等于0的形式而达到降次的目的,可谓是殊途同归。同时可以看出,这几种方法都是将“二次”降为“一次”,然后将一个一元二次方程化成了两个一元一次方程,然后用七年级学过的一元一次方程的解法来解决问题,这体现了一种转化的数学思想。可以给学生强调:我们学习数学知识有一种重要的方法,就是将遇到的新问题转化成我们已经学过的的、已经能解决的旧问题而解决,这就是转化归纳的数学思想。
4、 拓展延伸:通过对一元二次方程解法的归纳,学生发现解一元二次方程的基本思想是“降次”,由此可以拓展:解高次方程的基本思想就是“降次”,降高次为一次,那么解多元方程的基本思想就是“消元”,这样学生就会理解以前学习的二元一次方程组和三元一次方程组的解法都采用的是代入消元法和加减消元法了。为学生以后学习多元高次方程的解法打下良好的基础。
5、 巩固练习:通过前面的练习和讲解,学生对一元二次方程的解法有了新的认识,这时应该趁热打铁,再出示几道习题让学生练习。
数学说课稿初中 篇7一、教材分析
同底数幂的乘法这节课要求学生推导出同底数幂的乘法的运算性质,理解和掌握性质的特点,熟练运用运算性质解决问题。在教学中改变以往单纯的模仿与记忆的模式,体现以学生为主体,引导学生动手实践,自主探索与合作交流的教学理念。通过练习形成良好的应用意识。
同底数幂的乘法是在学习了有理数的乘方和整式的加减之后,为了学习整式的乘法而学习的关于幂的一个基本性质,又是幂的三个性质中最基本的一个性质,学好了同底数幂的乘法,对其他两个性质以及整式乘法和除法的学习能形成正迁移。
因此,同底数幂的乘法性质既是有理数幂的乘法的推广, 又是整式乘法和除法的学习的重要基础,在本章中具有举足轻重的地位和作用。
二、教学目标
(一),知识技能
1。理解同知识技能底数幂的乘法法则
2。运用同底数幂的乘法法则解决一些实际问题
(二),能力训练
1。在进一步体会幂的意义时,发展推理能力和有条理的表达能力
2。通过"同底数幂的乘法法则"的推导和应用,使学生领会特殊—————一般—————特殊的认知规律
(三),情感价值
体味科学的思想方法,接受数学情感的熏陶,激发学生探究的兴趣
教学重点: 正确理解同底数幂的乘法法则
教学难点:正确理解和应用同底数幂的乘法法则
教学手段:为了使性质的推导过程更形象和清晰,所以借助多媒体来进行教学。
三、教学方法分析
1。教法分析
根据教学目标,要让学生经历探索性质的过程,因此,在性质的推导过程,采用让学生尝试的教学方法,以问题的形式,引导学生进行思考,探索,再通过交流, 讨论,发现性质,使学生的学习过程成为再发现,再创造的过程,使学生在学习的过程中掌握学习与研究的方法,养成良好的学习习惯,从而学会学习,学会思考, 学会合作,学会创新;
对于推导出的性质及其语言叙述,则可以一种较轻松而又富有挑战性的方式指导他们理解记忆,在教学方法上采用学生讨论与教师的讲授相结合。而在整个教学中,分层次地渗透了归纳和演绎的数学思想方法,以培养学生养成良好的思维习惯。
2。学法指导
教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此,在教学中要不断指导学生学会学习。
本节课主要是教给学生"动手做,动脑想,多合作,大胆猜,会验证" 的研讨式学习方法。这样做增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径和思考问题的方法,使学生真正成为学习的主体。以及通过动手实践,理解记忆和强化训练的学法掌握本节课内容。
四、教学过程
一。创设情景 提出问题
运用多媒体投影引例,引导学生观察由问题而得到式子特点:105×107=
二。探索交流 发现新知
(一),提出新任务:
思考:an 表示的意义是什么 其中a,n,an分 别叫做什么
问题:1。25表示什么
2。10×10×10×10×10 可以写成什么形式
思考:1式子103×102的意义是什么
2这个式子中的两个因式有何特点
3。a3×a2=
过程中注意了解学生对幂的意义的理解程度,要求学生说明每一步的理由。
思考:请同学们观察下面各题左右两边,底数,指数 有什么关系
103 ×102 = 10( ) 23 ×22 = 2( ) a3× a2 = a( )
(二),提高任务难度:
引导学生观察计算前后底数和指数的关系,并鼓励其运用自己的语言加以描述。
猜想:am · an= (当m,n都是正整数)
(三),提出挑战:能否用一个比较简洁的式子概括出你所发现的规律
(四),提出更高挑战:要求学生从幂的意义这个角度加以解释,说明,验证它的正确性。
然后要求学生按步骤独立思考和探索:
1。比一比:识记运算性质
2。回想一下你是用什么办法记住的 用这个办法能否持久 你能否提出一个更有建设性的改进措施
猜想:am · an= (当m,n都是正整数)
对运算性质的剖析 条件:
①乘法
②同底数幂
结果:
①底数不变
②指数相加 (目的是为了化解难点)
3。再识记。在理解的基础上,结合性质的特点和语言 叙述,有目的地提取记忆。
4。提问:"你认为这个性质的应用,应特别注意什么 "
(五),应用练习 促进深化
1。计算:(1)107 ×104 ; (2)(—x)2 · (—x)5 。
2。计算:(1)23×24×25 (2)y · y2 · y3
你能回答开始提出问题吗 105×107等于多少呢
练习设计:
巩固练习:
1计算:(抢答)
2计算:
3。下面的计算对不对 如果不对,怎样改正
变式训练:填空:
思考题 :
1。计算:
2。填空:
五、提炼小结 完善结构
"通过本节课的学习,你在知识上有哪些收获,你学到了哪些方法 "引导学生自主总结,组织学生互相交流各自的收获与体会,成功与失败。
六、布置作业 延伸学习
文档为doc格式