高中数学说课稿

时间:2024-09-30 23:45:18
精选高中数学说课稿锦集6篇

精选高中数学说课稿锦集6篇

作为一无名无私奉献的教育工作者,就有可能用到说课稿,认真拟定说课稿,那么应当如何写说课稿呢?以下是小编收集整理的高中数学说课稿6篇,仅供参考,大家一起来看看吧。

高中数学说课稿 篇1

高中数学说课稿模板

课题:_________________________(说课稿)

一、说教材:

1、地位、作用和特点:

《________________》是高中数学课本第______册(____修)的第____章“________”的第______节内容。

本节是在学习了___________________________________之后编排的。通过本节课的学习,既可以对_____________________________的知识进一步巩固和深化,又可以为后面学习_________________________打下基础,所以_________________是本章的重要内容。此外,《________________________》的知识与我们日常生活、生产、科学研究_________________________有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是:____________________; 特点之二是:_________________。

2、教学目标:

根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

(1)知识目标:A、B、C

(2)能力目标:A、B、C

(3)德育目标:A、B

3、教学的重点和难点:

(1)教学重点:

(2)教学难点:

二、说教法:

基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

三、说学法:

学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。

1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

本节教师通过列举具体事例来进行分析,归纳出________________________,并依据此知识与具体事例结合、推导出___________________________,这正是一个分析和推理的全过程。

2、让学生亲自经历运用科学方法探索的过程。_主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授________________时,可通过_____________演示,创设探索______________规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

四、教学过程:

(一)、课题引入:

教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。

(二)、新课教学:

1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

(三)、实施反馈:

1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

五、板书设计:

在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

六、说课综述:

以上是我对《___________》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的_________________知识,并把它运用到对______________ 的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

____总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培 ……此处隐藏6267个字……学习有助于学生进一步理解正弦函数的图象和性质,加深学生对函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识。同时为相关学科的学习打下扎实的基础。

⒉教材的重点和难点

重点是对周期变换、相位变换规律的理解和应用。

难点是对周期变换、相位变换先后顺序的调整,对图象变换的影响。

⒊教材内容的安排和处理

函数y=asin(ωx+φ)图象这部分内容计划用3课时,本节是第2课时,主要学习周期变换和相位变换,以及两种变换的综合应用。

二、目的分析

⒈知识目标

掌握相位变换、周期变换的变换规律。

⒉能力目标

培养学生的观察能力、动手能力、归纳能力、分析问题解决问题能力。

⒊德育目标

在教学中努力培养学生的“由简单到复杂、由特殊到一般”的辩证思想,培养学生的探究能力和协作学习的能力。

⒋情感目标

通过学数学,用数学,进而培养学生对数学的兴趣。

三、教具使用

①本课安排在电脑室教学,每个学生都拥有一台计算机,所有的计算机由一套多媒体演示控制系统连接,以实现师生、生生的相互沟通。

②课前应先把本课所需要的几何画板课件通过多媒体演示系统发送到每一台学生电脑。

四、教法、学法分析

本节课以“探究——归纳——应用”为主线,通过设置问题情境,引导学生自主探究,总结规律,并能应用规律分析问题、解决问题。

以学生的自主探究为主要方式,把计算机使用的主动权交给学生,让学生主动去学习新知、探究未知,在活动中学习数学、掌握数学,并能数学地提出问题、解决问题。

五、教学过程

教学过程设计:

预备知识

一、问题探究

⑴师生合作探究周期变换

⑵学生自主探究相位变换

二、归纳概括

三、实践应用

教学程序

设计说明

〖预备知识

1我们已经学习了几种图象变换?

2这些变换的规律是什么?

帮助学生巩固、理解和归纳基础知识,为后面的学习作铺垫。促使学生学会对知识的归纳梳理。

〖问题探究

(一)师生合作探究周期变换

(1)自己动手,在几何画板中分别观察①y=sinx→y=sin2x;②y=sinx→y=sin

x图象的变换过程,指出变换过程中图象上每一个点的坐标发生了什么变化。

(2) 在上述变换过程中,横坐标的伸长和缩短与ω之间存在怎样的关系?

(二)学生自主探究相位变换

(1)我们初中学过的由y=f(x)→y=f(x+a)的图象变换规律是怎样的?

(2) 令f(x)=sinx,则f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的变换是不是也符合上述规律呢?请动手用几何画板加以验证。

设计这个问题的主要用意是让学生通过观察图象变换的过程,了解周期变换的基本规律。

设计这个问题意图是引导学生再次认真观察图象变换的过程,以便总结周期变换的规律。

师生合作探究已经让学生掌握了探究图象变换的基本方法,在此基础上,由学生自主探究相位变换规律,提高学生的综合能力。

〖归纳概括

通过以上探究,你能否总结出周期变换和相位变换的一般规律?

设计这个环节的意图是通过对上述变换过程的探究,进而引导学生归纳概括,从现象到本质,总结出周期变换和相位变换的一般规律。

〖实践应用

(一)应用举例

(1)用五点法作出y=sin(2x+)一个周期内的简图。

(2)我们可以通过哪些方法完成y=sinx到y=sin(2x+)的图象变换

(3)请动手验证上述方法,把几何画板所得图象与用五点法作出的简图作比较,观察哪些方法是正确的,哪些方法是错误的。

(4)归纳总结

从上述的变换过程中,我们知道若f(x) =sin2x,则f(___)= sin(2x+),由f(x)→f(x+a)的变换规律得从y=sin2x →y= sin(2x+)的变换应该是_____.

(二)分层训练

a组题(基础题)

如何完成下列图象的变换:

①y=sin3x→y=sin(3x+1)

②y=sin(x+1) →y=sin(3x+1)

b组题(中等题)

如何完成下列图象的变换:

①y=sin3x→y=sin(3x+1)

②y=sin(x+1) →y=sin(3x+1)

③y=sinx →y=sin(3x+1)

c组题(拓展题)

①如何完成下列图象的变换:

y=sinx →y=sin(3x+1)

②我们知道,从f(x)到f(x)+k的变换可通过图象的上下平移(k>0上移)(k<0下移)|k|个单位得到。那么由y=f(x)→y=af(x)+k的变换中,振幅变换和上下平移变换是不是也有先后顺序呢?请通过实例加以验证。

让学生用五点法作出这个图象是为了验证变换方法是否正确。

给出这个问题的用意是开拓学生的思维,让学生从多角度思考问题。

这个步骤主要目的是培养学生的探究能力和动手能力。

这个问题的解决,是突破本课难点的关键。通过问题的解决,让学生理解如果先进行周期变换,而后进行相位变换,应特别关注x的变化量。

a组题重在基础知识的掌握,

由基础较薄弱的同学完成。

b组比a组增加了第③小题,

重在对两种变换的综合应用。

c组除了考查知识的综合应用,

还要求学生对新问题进行探究,

有较大难度,适合基础较好的

同学完成。

作业:

(1)必做题

(2)选做题

作业分为两种形式,体现作业的巩固性和发展性原则。选做题不作统一要求,供学有余力的学生课后研究。

六、评价分析

在本节的教与学活动中,始终体现以学生的发展为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,注意学生的品德、思维和心理等方面的发展。重视动手能力的培养,重视问题探究意识和能力的培养。同时,考虑不同学生的个性差异和发展层次,使不同的学生得到不同的发展,体现因材施教原则。

调节与反馈:

⑴验证两种变换的综合时,可能会出现有些学生无法观察到两种变换的区别这种情况,此时,教师除了加以引导外,还需通过教师演示和详细讲解加以解决。

⑵教学中可能出现个别学生无法正确操作课件的情况,这种情况下一定要强调学生的协作意识。

附:板书设计

《精选高中数学说课稿锦集6篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式